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Introduction

Precipitate aging in thin films is often characterized by mixed-dimensional coarsening, when 3-D

precipitates interact through 2-D diffusion restricted to the film plane. Such processes can be physically

modeled by arranging a distribution of liquid droplets embedded in an isolated fluid layer. The average

size of the precipitated particles increases under the capillary driving force. Larger particles grow on

account of the smaller ones which shrink and vanish. This process occurs in solids, liquids and even

gases, having similar phenomenolog)/and asymptotic scaling behavior. The mechanism of mass transfer

among the particles is diffusion in the interparticle matrix space.

Although the driving force and mechanism of the process are well known, there are many

additional factors making theoretical description of the coarsening difficult. One such factor is gravity. In

a liquid or gas matrix with particles present having a different mass density gravity leads to sedimentation,

i.e. settling of the particles rather than diffusion-limited coarsening. To prevent such sedimentation,

experiments should be performed in microgravity. An alternative is to match the densities of the matrix

and the particles as closely as possible.

A new powerful experimental technique based on holographic observations, developed at the

NASA Marshall Space Flight Center, now permits observation of small liquid droplets coarsening. This

technique was developed and used for mixed-dimensional coarsening studies by our co-investigators Drs.

D.O. Frazier, W.K. Witherow, B.R. Facemire, J.P. Downey, and I.R. Rogers, of the Space Science

Laboratory. Experiments were conducted on an isopycnic two-phase alloy of succinonitrile and water,

annealed isothermally over a four-month period. The succinonitrile-rich droplets precipitate from a water-

rich liquid matrix having a density very close to that of the droplets. The matrix and droplets, however,

have different optical indices. The results of these experiments, along with the results of computer

simulation based on the quasi-static diffusion approximation developed at Rensselaer are reported below.

These results were published recently in [1, 2]. Copies of these papers are attached to this report (see

Appendices I and 17).
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Experiment

The alloy selected for experiments exhibits total mutual solubility at relatively high temperatures,

and a critical point and miscibility gap at lower temperatures. Small (10 to 50 ktm) droplets with uniform

shapes of spherical caps precipitate on the walls of the test cell. The isothermal annealing causes

coarsening by diffusion among the droplets. The distance between the front and the back cell walls is 100

gtm, which is smaller than a typical distance between the droplets. The boundary conditions at the walls

impose a zero normal diffusion flux. Such a geometry and the boundary conditions imply that the

diffusion field among the droplets may be considered as two-dimensional. For three-dimensional objects

exchanging atoms by two-dimensional diffusion field, the dimensionality of the problem suggests the

scaling behavior R"* o_ t, where R" is a characteristic linear scale of the system, and t is the time [3]. For

example, R may be chosen as the average radius of the droplets. Fig. 1 shows the average radius of the

droplets vs. time. Because the total volume of the system is constant, NR 3 = const, where N is the

number of droplets. The consequence of this scaling behavior is that the number of droplets N depends on

time as N "4j3 o_ t (see Fig. 2).
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Fig. 1. Scaling of average droplet radius with time. Fig. 2. Scaling of number of droplets with time.

The holographic experimental technique permits, for the first time, one to obtain trajectories (time

dependencies of the particle size) for each individual droplet (see Appendix I). This information allows the

direct comparison of experiment with the theoretical calculations.

Theory

General formulation

The theoretical analysis of coarsening of the droplets requires solving the moving boundary

diffusion problem (Stefan problem) with boundary conditions at the test cell walls and at the surfaces of

the droplets. The boundary condition imposed on the droplet surfaces is given by the Gibbs-Thomson

equilibrium capillary equation

kT '
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wherec(R) is the equilibrium concentration at the surface of the droplet with radius R, co is the equilibrium

concentration for a planar interface, _, is the surface tension, f_ is the atomic volume, k is the Boltzmann

constant, and T is the temperature. For a large number of droplets, even a numerical solution of this

extremely complex problem appears numerically unrealistic. However, if co is much lower than the

concentration inside the droplets then the characteristic diffusion time is much less than the time needed for

significant change of the droplet radius. As a consequence, one can, following Todes [4], substitute the
Oc

Lapacian equation V2c = 0 for the diffusion equation, _ = DV_c. This concept of quasi-stationary

diffusion was used later by Lifshitz and Slyozov [5], Wagner [6] and others in the formulation of classical

coarsening theory.

Even after such a large simplification, the problem still remains too difficult for direct numerical

analysis. Each droplet surface represents a continuum of sources/sinks for solute atoms. As the

concentration field obeys the Laplacian equation, one can use the multipole series expansion for

approximating the exact boundary conditions at the droplet surfaces. In two dimensions, the multipole

series is given by

d.7

c(7) = _'+ qlnr +--_+...

The larger is the interdroplet distance as compar_t to the droplet radii, the fewer is the number of terms of

the series needed. The logarithmic term is referred to as a "monopole" term, the next one as a "dipole"

term, etc. It is important to mention that the rate of the droplet size change is defined by the monopole

term alone:

dR = _ 2 zr _ DcoH__2 '
dt ' 3a "

!

where t_ is a geometrical factor depending on the contact angle, and H is the distance between the test cell

walls.



t

Monopole Approximation

The general two-dimensional solution of the Laplacian equation in the monopole approximation is

c(7)=_-CoZqiln ,
i=l Ri

where 7/and Ri axe the position of the center and the radius of the i-th droplet, respectively, and N is the

number of droplets. To obtain the values of (N+I) constants of integration _" and qi we use the Gibbs-

Thomson equilibrium boundary conditions at the particle surfaces. Neglecting the droplet radius as

compared to the interdroplet distance one substitutes the position at the surface of the droplet by the

position of its center. This procedure provides a linear set of N equations. The missing equation from the

N+I solution set corresponds to the boundary condition at infinity. In our treatment we used a mass

conservation equation instead, which provides the last equation needed to determine the solution set (see

Appendix I1").

The monopole approximation provides the rates of the droplet radii change depending on the

positions of the individual droplets. The values of qi' s are determined by the diffusion fields created at the

vicinity of the i-th droplet by the other droplets. However, we neglect the size of the droplet compared to

the interdroplet distance, resulting in the neglectof the gradients of the diffusion field. Note, that in two

dimensions the monopole term changes very slowly, as a logarithmic function. The next term in the

expansion is a dipole term accounting for the gradients in the vicinity of the droplets. This term decays as

slowly as the reciprocal of the distance to the center of the droplet and, therefore, may be important in

droplet systems with higher volume fractions.

Dipole Approximation

The general solution of the Laplacian equation incorporating the dipole terms is given by

c(?)=_'+Co_f qjln F-_'] ct)'(_-_) /

;t- --4-,+ )
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To satisfy the equilibrium boundary conditions for any direction of ,_,, the following two equalities have

to be met:

I
kT Ri

and

Together with the mass conservation condition, this results in the full set of (3N+l) linear equations for

qi's, d, 's and _" (see Appendix ID.

During the numerical simulation, the set of ordinary differential equations for the droplets radii is

solved using a fourth-order Runge-Kutta algorithm. The values of the qi's are obtained at each time step

by solving the corresponding linear set of equations for the monopole dipole approximation. The

disappearance of a shrinking droplet causes a singularity to occur in the flux values. In order to deal with

these singularities numerically, the time step is adjusted by estimating the shortest droplet lifetime. The

droplets are eliminated from the calculation when they fall below the threshold size being much smaller

than the average droplet size in the system at that instant. The entire numerical program was tested and

verified using a two-droplet case permitting the analytical solution.

Results and Discussion

The initial state for the simulation is taken from the experimental data described above. To find the

relation between the experimental time t and the computational dimensionless time z we used the time

dependence of the number of droplets shown in Fig. 2. The results of both monopole and dipole

calculations fit the experiment well for some period of time. The deviations observed for larger times

might result from the accumulated influence of the droplets located beyond the experimental field of view.

As we already mentioned, in two dimensions the dependence of interaction between the droplets on the

distance is rather subtle, and the interacting particles are not required to be located close to each other.
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In contrast with the global behavior for the droplet population, the results of the comparison between

the experiment and the calculations for individual droplet evolution vary widely. In many cases we

observe good agreement between the experiment and both dipole and monopole approximations, as shown

in Fig. 3. In some cases the dipole calculation deviates from the monopole calculation and the dipole

results are closer to the experimental measurements (see Fig. 4). In the third group we find large

deviations between the calculations and the experimental results (see Fig. 5). We suggest that the cases in

which the dipole calculation results diverge from the monopole calculation the diffusion field contains a

strong gradient at the vicinity of the droplets. The cases with poor agreement between the calculations and

the experiment appears to be caused by the uncontrollable influence of the droplets located beyond the

experimental field of view.
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Fig. 3. Typical individual droplet evolution in the
case of a good agreement between the experiment and

the calculations

Fig. 4. Typical individual droplet evolution in the
case when the dipole approximation shows better
agreement with the experiment as compared to the

monopole approximation.
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Coarsening of Three-Dimensional
Two-Dimensional Diffusion Part I.

Droplets by
Experiment
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V.E. FRADKOV, S.S. MANI, and M.E. GLICKSMAN

Rensselaer Polytechnic Institute, Troy, NY 12180-3590

An experimental study of diffusional coarsening, or Ostwald ripening, in a
liquid-liquid two-phase system is described. An experiment performed at its
isopycnic point, 42°C, allowed observations for the long times required to
investigate coarsening. A holographic technique was instrumental in this work.
Holograms taken in situ permit investigation of details regarding both the
influence of local environmental conditions on individual droplet size histories
and measurement of global averages. This study utilized a I00 _m pathlength
test ceil. The discrete phase was nucleated on one wall of the cell. This
configuration resembles island formation in thin film growth. Observation of
Ostwald ripening over a period of I × 10; s (-4 too.) reveals that droplet number
decays as t -°-733and the average radius increases as t -°_2_=,in the asymptotic limit.
This shows good agreement with theoretical predictions for diffusional growth
of spherical caps on a two-dimensional substrate which is a valid approximation
for the geometry of this experiment. Part I of this paper describes the experimen-
tal results. Part II discusses a numerical model for droplet growth in a
comparison with the experimental results.

Key words: Diffusion, holography, kinetics, microstructure coarsening.
Ostwald ripening, phase transformation

INTRODUCTION

Ostwald ripening is the process by which larger
droplets grow at the expense of smaller ones, by"
diffusion of mass away from droplets below a critical
radius toward ones above this critical size. The phe-
nomenon is important in many disciplines. Of par-
ticular interest to materials processing is its influ-
ence on the time dependence of droplet (or particle )
size distributions of a precipitated phase.

The objective of this work was to perform an ex-
perimental study of the development of mi-
crostructures and the growth of a second phase in a

_Received March I, 1994: revised June 8. 1994_

two-phase system. To a large extent, growth and
distribution of the discrete phase determine the me-
chanical and electronic properties of an alloy. A de-
tailed understanding of microstructure is essential to
predicting the behavior of a material. For example.
the formation and growth of clusters in semiconduc-
tor thin film deposition result in microstructures
which dictate film properties in a device application.
Most modeling and experimental studies focus on the
average particle and the late stages of growth pro-
cesses. However, the behavior of the "weakest link"
rather than an average property is fundamental to
developing predictability regarding practical prob-
lems such as fracture analysis in metal fatigue. The
unique capabilities provided by holographic tech-
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Fig. 1. Projected image of the test cell. The whi_e OOXindicates the area

selected for analysis.
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niques allow detailed analyses of both local dynamic
behavior within the context of a particle ensemble
and resulting microstructures from a statistically

significant population.
The theoretical analysis of coarsening of the drop-

lets requires solving the moving boundary diffusion
problem (Stefan problem_ with boundary conditions
at the test cell walls and at the surfaces of the

droplets. The boundary condition imposed on the
droplet surfaces is given by the linear form of the
Gibbs-Thompson equilibrium equation

c(R)=c,(1 -L (1,
' _ R,'

where c(R} is the equilibrium concentration at the
surface of the droplet with radius R, % is the equi-
librium concentration at the plane interface, and L is
the Gibbs-Thompson characteristic iength, given by

L= 2"/_ (2J
kT '
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Fig. 3. Densities of equilibrium phases in succinonitrile/water as
functions of temperature.

where 7 is the interfacial tension, _ is the molecular
volume, k is the Boltzmann constant, and T is the

temperature.
In their classical studies of the ripening process

Lifshitz, Slyozov, and Wagner (LSW) L2 and Todes _

applied the steady state approximations to the diffu-
sion process. This approximation is valid for the ease
of very low supersaturation where the characteristic
diffusion time is much less than the time required for

a significant change in the droplet radius. Using this
approach, they determined global scaling laws for the
ease of three-dimensional diffusion processes. The

length scale for the ripening process can be consid-
ered to be the average droplet size which predictably

grows as t L3 for the latter stages of a three-dimen-
sional diffusional growth. The decrease in the number
of droplets as a function of time for the three dimen-
sional case is given by N(t) ¢- t-k _.2 Experimental
investigations and numerical simulations support

this scaling prediction.
Ripening processes follow different scaling laws in

a two-dimensional system. An example of this is the
growth of spherical caps on a two-dimensional sub-
strate. Theoretical arguments by Chakraverty for

multiparticle diffusion between three-dimensional

particles with mass transport restricted to two-di-
mensions predict N(t) o, t-* 4 and that length scales as
t_.4.4 Slyozov obtained the same result for interacting
three-dimensional clusters located on a planar sub-

strateJ Both Chakraverty and Slyozov utilized the
mean-field approximation for their two-dimensional
concentration field and assumed implicitly a iow
volume fraction of droplets. Their prediction has been

• observed experimentally. _ Part II of this paper de-
scribes the development of a numerical model of

three-dimensional droplet growth due to two-di-
mensional diffusion.

This study employed holography to record the rip-

ening processes in the experimental test cell. The
holograms, permanent records of the wavefront, may
be reconstructed and the wavefront precisely repro-
duced. The reconstructed wavefront gives an exact

three-dimensional reproduction of the test cell con-
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tents at the instantof exposure.Eachhologramal-
lows measurement of all the droplet radii in the test
cell at a given instant of time. During reconstruction,
the hologram image can be moved with relative ease,
and the entire test cell volume can be investigated by
stepping the field.of-view through a magnified recon-
structed image of the test cell. A square region con-
sisting of 25 fields of view (about 5% of the recorded
test cell volume), initially populated with 187 drop-
lets, comprised the area selected for analysis. Figure
1 shows a projection of the test cell indicating the area
chosen for detailed analysis. It is important to note
that the holographic records archive a great deal of
additional data.

MATERIALS AND METHODS

All theoretical models of the Ostwald ripening con-
sider growth only due to diffusion. A test of this theory
required an experiment devised to study nearly pure
diffusional growth by simultaneously eliminating
coalescence and convection. Solutions ofsuccinonitrile/

water (SCN/HoO) offer an experimentally convenient
model system i_or the study. Figure 2 shows the phase

diagram for SCN/HoO.: Above the critical consolute
temperature, 56°C, _CN/H_O forms a single phase.

When compositions spanning the miscibility gap of
the phase diagram are cooled through the coexistence
curve, the system separates into droplets of one liquid

dispersed in another. Unlike metallic alloys, both the
droplet and surrounding phases are transparent, and
the growth of the former may be followed by optical
means in situ. Moreover, because the phase separa-
tion occurs near room temperature, elaborate fur-
naces for temperature control are not required as
would be the case for metals. These experiments were

performed near the isopycnic temperature of approxi-
mately 42°C IFig. 3). The droplets were located on the

inside wall of a 100 _m pathlength optical cell. During
the observation period which spanned about four
months, the droplet positions remained unchanged.

The SCN/I-_O system is well characterized as a
transparent model for observations of metallic
monotectic solidification phenomena 8 and, therefore,
was the system of choice for the Ostwald ripening
studies. Succinonitrile was vacuum-distilled twice at

a measured pressure of 10-20 mm Hg. Water was
distilled and filtered through a Millipore Milli-Q wa-

ter system giving a resistivity of 18 Mohm cm. Ap-
proximately equal volumes of the two components
were mixed in a waterjacketed separatory funnel and
allowed to equilibrate at about 45°C. Aliquots of the
water-rich phase extracted from this solution, when

cooled at 42°C, resulted in SCN-rich droplets. This
phase was selected to assure that the nucleating
phase would not wet and spread on the quartz test cell

walls. Figure 4 shows nonwetting SCN-rich droplets
on a quartz plate.

Experiment Test Cell and Apparatus

A commercially available micro cylindrical spectro-
photometer cell shown in Fig. 5 having an optical path

[ oo I

length of 100.am yielded particle densities low enough
to allow holographic imaging with good resolution." A
6 in. length of glass tubing attached to the cell fill port
permitted sealing. Fillingthe cell consisted of extract-
ing the lower phase from the reservoir thermostated
at 45°C in a heated pipette, wiping the pipette to
remove excess upper phase, and expelling the solu-
tion into the cell, while maintaining homogeneity by
gently heating the pipette with a hot air gun. After the
filling operation, the glass extension tube was sealed.
Submerging the cell body in an ice bath prevented the
solution from significantly changing composition due

to vaporization during the sealing procedure. Heating
the cell to 46_-C for 48 h prior to the experiment
assured solution homogeneity. The cell was trans-
ferred to the isothermal test chamber held at 46.4:C.

Scattering of the laser light during a slow quench
determined the actual consolute point to be 45.01°C.
After reheating to 46.3°C for 24 h, stepwise quenching
into the miscibility gap initiated the experiment.
Observations taken during the quench assured the
low volume fraction of discrete phase required for
optical resolution considerations and for comparison
to theo_'. A test chamber temperature of 42.5:C, close
to the neutral buoyancy temperature, wielded an

ii

Fig. 4. Photograph of succinonitrile-rich droplet On Quartz,
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appropriate volume fraction and good thermal con-
trol. The temperature profile for the duration of the
experiment is shown in Fig. 6.

Figure 7 is a schematic of the experimental ap-
paratus. The test cell is positioned in a temperature-
controlled water bath, an insulated stainless steel
chamber with optical _indows. A 0.2 _m filter ele-
ment removed particles from the bath water that
would interfere with holographic images. A ther-
mistor in the bath was one leg ofa ESI Model 250DE
Wheatstone bridge and served as the feedback mecha-
nism to provide control to a resistance heater in the
bath. A Brookfield counter-rotating stirrer provided
adequate stirring without entraining air in the water.
Using this system, temperatures in the bath were
controlled to 0.030°C over 94% of the experiment and
0.002:C for the first week of the 112-day observation.
Performing the experiment near the isopycnic tem-
perature minimized the effects of buoyancy.

Holographic Data

The time interval between holograms was initially
2 min. As the rate of change in droplet size distribu-

Rogers. Downey. Witherow, Facemire, Frazier,

Fradkov. Mani, and Glicksrnan

tion decreased, the time interval between holograms
increased to two per day and finally to one per day.
Each hologram is a record of the wavefront received
by the film and contains all the optical information
from the test cell for the instant in time when that
hologram was made. When the hologram is recon-
structed, the entire volume between the optical flats
of the cell can be examined using various optical
analysis tools which were not compatible x_2th the test
cell in situ. Details regarding the holographic con-
struction and reconstruction systems can be found in
Witherow 9 and Witherow and Facemire. _'-'This holo-

graphic system gives a resolution ofabout 5 _Jm for the
reconstructed image.

Reconstructed images from the holograms projected
on the lens ofa Dage MTI 70D video camera provided
input for image analysis. The number of video fields
required to span the diameter of the test cell in the
reconstructed image and measurement of the test cell
diameter determined the magnification factor for
video-based droplet measurements. Using this mag-
nification, the image of a single field comprised an
area of 552 × 407 _m. Although the entire volume is
available for study, the investigation examined a
representative region of the test cell indicated in Fig.
1. One aim of this investigation, exploration of local
interparticle interactive effects on the ripening pro-
cesses, dictated use of contiguous rather than random
fields. A 5 by 5 field section (25 fields), 5.617 x 10epm -_,
represents a volume of 5.617 x 104 cc, approximately
5c_ of the observable volume located within the optical
viewing area of the test cell. Virtually all droplets
focus in the same plane, indicating that they are
located in the same plane. Further, they do not move
at all over the lengthy duration of the experiment.
indicating attachment to the same wall of the cell.
This is to be anticipated because during the quench.
the front wall of the test cell experienced the cooler
temperature first because of reduced cooling fluid
circulation on the sheltered back wall, Fig. 5). The
stagnant fluid in the sheltered portion of the test cell
cooled more slowly than the front wall. Therefore, droplets
nucleated on the cooler, front face of the test cell.

RESULTS AND DISCUSSION

Of the 152 holograms obtained during the exper-
iment, the first 25 were taken as the cell cooled to the
operating temperature. 42.5:C. The remaining holo-
grams at this temperature, clearly show the ripening
of the droplet phase over time. Figure 8 shows a series
of photographs from reconstructed holograms. The
data reported here reflect measurements taken from
14 of the 152 holograms, selected at intervals span-
ning the duration of the experiment. Tab}e I lists the
hologram number and recording time for each holo-
gram studied. Recording time indicates time elapsed
since initiation of the quench sequence.

Calculations using density data of compositions
(majority phase, 93 mole_ H:O: minority phase. 48
mole_ H_,O) taken from the phase diagram tie line at
the experiment operating temperature indicate a
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volume fraction of the succinonitrile rich droplet phase
of approximately 2.75_. The emphasis of this study is
the evolution of a droplet size distribution due to

diffusional growth. Therefore, quantitative analysis
of this long-term growth process could not begin until
the volume fraction of the discrete phase became

constant. Figure 9 shows the volume of the droplet
phase in the _dewing volume as a function of time.
Calculation of total droplet volume assumes uniform
shape for the droplets. This approximation is consis-
tent with observations of wetting of succinonitrile-
rich phase on quartz as shown in Fig. 4. Figure 9
indicates that the constant volume condition is at-

tained by the second observation (1.2 days). Once
constant volume is achieved, the average total vol-

ume of the droplet phase within the viewing volume
did not exceed 1.4 x 10 _ cm a, the maximum deviation
from this value is 5%. This corresponds to a maximum
volume fraction of 2.5c'c. This is, within the limits of

experimental error, in good agreement with the vol-
ume fraction of 2.75c'c. calculated from the phase
diagram.

Theoretical analysis of ripening processes generally
considers the long-time asymptotic behavior. Figure
10 is a plot of the number of droplets within the field
of view as a function of time. Linear regression per-
formed on the observations indicates that in the later

stages of the experiment, the slope of the curve achieved
a value of-0.733, with a correlation coefficient of
0.994. The geometry of our experiment is represented
by spherical caps located on a substrate interacting
through two-dimensional diffusion fields, as indi-
cated in Figure 5. Chaklaverty 4 developed expres-
sions for growth of a discrete phase of spherical caps
on a two-dimensional substrate due to surface diffu-

sion. His analysis indicates that N scales as t -3'4. Our
experimental results for the rate of droplet decay are
in good agreement with this value.

Figure 11 shows the change in average droplet
radius as a function of time. During the reported
period of observations, a I38% increase in average
radius is realized. The analysis of Chakraverty 4 pre-
dicts that r scales as t _ in the asymptotic limit. The

Fig. 8. Photogral:)hsfrom fC::" holograms of the same field-of-view
whichshowd_)en=ngeffectsovera periodof severalmonths.

plot of r vs time shown in Fig. 12 reveals that in the
asymptotic limit (after -2.5 weeks) the slope of the
best fit line through these data is 0.247 with a corre-
lation coefficient of 0.986. Again, our experimental
data show agreement with the trends predicted by
theory.

Statistically. self-similarity is a hallmark of the
Ostwald ripening effect. 1.2.6Theoretical analysis shows

I

Table L Numbers and Recording Time
for Studied Holograms

Hologram Number Time, Seconds

20 1.6 x I0 _
30 1.06 x 10 s
40 5.4 x lOs
50 1.07 x 106
61 1.5 x 106
70 2.0 x l0 s
80 2.5 x lOs
90 3.1 x I0 s

100 3.7 x 104
II0 4.5 x IOs
120 5.7 x i0 s
130 7.2 x 10 s
140 8.1 x I0 _
152 9,8 x 104
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that a scaled-time-independent droplet radius distri-
bution function exists2 .n Morphological configura-
tions during Ostwald ripening should remain statis-
tically equivalent when examined under appropri-
ately scaled magnifications. Figure 13 shows photo-
graphs taken directly from selected holograms during
the ripening experiment. Photographs were taken to
show a large portion of the test cell contents (approxi-
mately 50% of the area shown in hologram 151, or 1.08
cm2). It is important to note that the droplets create
interference fringes on these pictures. Droplets are
the bright spots surrounded by the halo-like interfer-
ence fringes. Additionally, bright spots occur inside
the small droplets, which act as lenses. The magnifi-
cation factors have been scaled with the average
droplet radii. The photographs show very similar size
distribution characteristics. Quantitative assessment
of statistical self-similarity requires a great deal of
additional data. Efforts to measure the size histories

of additional droplets are presently under way.
Holography enables the study of local environment

effects on the rate of droplet growth. Figure 14 shows
the droplet size history of a centrally located portion
of the viewing region in the vicinity of Field 19.
Asterisks denote locations of droplets consumed due
to the ripening process. Field 19 contained droplets
141-146, Figure 15 is a plot of the droplet diameters

Rogers, Do_.,ey, Witherow. Facemlre. Frazier.
Fradkov. Mani, and G[icksman

by hologram number. Note that the curve for droplet
145 intersects the curves for droplets 143 and 141.
Classic ripening theory predicts that the larger drop-
lets in a population should grow: the individual drop-
let trajectories should not cross. A careful examina-
tion of Fig. 14 reveals that droplet 145's spatial
location favors diffusional interactions with droplet
171 in Field 23; droplet 145 shrinks and eventually
disappears due to local effects.

Local effects also become evident in an examination
of the critical radius. The critical radius at a given
time in the experiment can be considered that droplet
size at which there is no net flux of material to the
droplet, where dR/dr = 0.00. Figure 16 shows plots of
rate of change of droplet radii for selected holograms
during the ripening stage of the experiment and the
value of R, predicted by theory. Theory suggests a
single value for the critical radius given by

R_(t)=9 _(t).

Examination ofFig.16revealsnoobservablerateof
change in dropletradius for a range of values of
dropletradii.The localenvironment ofeach specific
dropletdetermines the criticalradius within that
environment.This range ofvaluescouldbe consid-
ered"microstructuralfluctuations"and indicatesthe

range ofdeviationsfrom theoreticalpredictions.Itis
alsoevidentthat,withintheresolutionofthemethod,
droplets of the same size appear to grow and shank
over the same time interval. This range of deviat:_,ns
may be a better predictor of the ultimate properties
and function of the material in applications than the
theoretical value of the =global critical radius."

CONCLUDING REMARKS

This study demonstrates limitations of mean field
approaches which adequately predict scaling laws
but not local droplet behavior during Ostwald ripen-
ing. Mean field theories incorporate use of a screening
length (often suggested as 1 = 2 droplet radii). Drop-
lets spaced farther apart than that distance should
grow or shrink only in response to differences be-
tween the concentration of the diffusing species at the
surface of the droplet as defined by the Gibbs-Thomp-
son equation and the mean field concentration, There
is no direct interdroplet communication at distances
which exceed 1,c. Therefore, where the interdroplet
spacing exceeds =2 radii, all droplets larger than R
should grow, all those smaller than R should shrink:
Additionally, droplets of the same size should change
size at the same rate. Data from this experiment
indicates otherwise. The mean field approach is not
sufficient to describe the behavior of individual drop-
lets. Droplet interactions must occur in a more direct
manner than suggested by the simple mean field
approach.

In order to explore direct droplet interactions, the
behavior of droplets with respect to size was ex-
amined. Surprisingly, the data includes observations
in which droplets larger than their nearest neighbor



i

Coarsening" ot'Three-Dimensmnai I)r. _ i-,,,-

Two-Dimensional Dil'fu_ion: Part I. Ex_,_, _ment I005

a b

c d

gig 13 Phomc, raor_s of ,es! cell at variable magn:fication for se:ecteo holograms: (al NG 90. l : 31 , 10_ S: (b_ _G 100. t ,,,3,7. 10"-s: (c) HG 120
•,57_ 10+s: chHG151 t=98 , !0 _s

)

eO
• go
O

• OO

• O0 •

T,.="'0 _-,:'2

e
• ,,;..;

'43
"-'_ • 0

011)

go

S_

_O

"O .,

•O •

'44 _,.t:

-O

• • ,O

• .
4 ,..O

• _,:. o '-_
• . , •

q

q
{

a b c

_"_''-_ ' _ " _ca _f' qea-g,g14 R_,.,.=:_r_,at_c _,c'_lets ,._ =eld_9: a -..q20.l=16, 10-'S;to "G8C :=25
t=37. 1C-:..

O

-O

• . •°

,_,o
"a3

• _a6

• 50u.,-- •

d

1O's:_c "+G90. I=3: • !Ss:,d_GICC

shrunk _and droplets smaller than thezr neares: neigh-
bor g-rely Clearl>. these droplets were respondma to
the intluence of droplets other than their nearest
neighbor The data ,_ug.,_ests that the drop-size histo-
ries of individual droplet_ depend, areatly ._n the

details of the local environment. The simple approach
of observing the interaction between a droplet and its
nearest neighbor quickly becomes complicated when
that nearest neJahbor has another neighbor which is
closer In another direction. The effects uf the iocal
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environment on the behavior of a specific droplet are
subtle. Understanding requires the application of
modeling techniques which can account for the na-
ture of diffusional interactions of the droplets in the
ensemble. An additional complicating factor which is
not addressed in the present studies is the possible
effects of residual concentration nonuniformities as
droplets become smaller than the resolution of the
observation system. Droplets of less than approxi-
mately 2-3 pm are below these limits.

This study also exemplifies the benefits of hologra-
phy. Using conventional microscopy, only one field-of-
_iew would be accessible during a given instant in
time. Holographic microscopy allows reconstruction
of the test cell image and extraction of full details
regarding the local environment of a given dropldt.
Future plans include the application of phase shifting
interferometry to the holograms of the experiment in
order to determine the concentration field in the test
cell. Direct assessment of the concentration field

should greatly enhance the understanding of dif-
fusive growth processes.

Computer modeling provides an important bridge
between theoretical predictions and experiments. Part
II of this paper describes computer modeling studies
which examine multiple droplet interactions to ac-
count for the observed local effects. The model in-
cludes droplet interaction parameters for the entire
ensemble of droplets observed during this experi-
ment. Predictions from the model are compared to
experimental observations reported in this paper.
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Theoretical modeling of coarsening among a finite cluster of precipitates is
implemented, using the multipole expansion method. This method requires the
diffusion field to behave quasi-statically. Two approximate solutions were
developed, one to monopolar order, and other to the dipolar order. The conven-
tional Gibbs-Thomson equilibrium relationship was used as the boundary.
condition at the precipitate-matrix interface. Part I of this paper considers a
liquid-liquid system in a mixed-dimensional geometrical configuration, wherein
three-dimensional precipitates interact via a diffusion field constrained in two
dimensions. This kind of geometric configuration is often encountered in island
evolution dynamics and phase segregation in thin films. The initial experimen-
tal configuration of droplets provides the initial condition for the simulation.
Both monopole and dipole approximations closely follow the experimentally
observed scaling laws, characteristic for the mixed-dimensional coarsening
(N -t3 and _ 4 varied linearly with time. where N is the number of droplets in the
experimental field of view, and R is the average droplet radius}. Good agreement
is observed for time evolution of radii of some individual precipitates. Certain
deviations appearing among the two approximate solutions and the experimen-
tal data are discussed.

Key words: Coarsening, kinetics, microstructure coarsening, Ostwald
ripening, phase transformation, quasi-stationary diffusion

LNTRODUCTION

Phase coarsening is an important process in the
microstructural evolution of dispersed multiphase
systems. The initial excess interfacial free energy, of
such a system is elevated due to the large number of
precipitated particles with high cur_'atures. During
coarsening, the excess interfacial energy is reduced
via diffusional mass transfer from regions of higher
average curvature to regions of lower curvature. The
average size of the precipitated panicles increases

,Received March 1, 1994: re_ised June 3. 1994)

with time, and the total number of particles in the
system decreases. Larger particles tend to grow at the
expense of the smaller ones which shrink and vanish.
This process, whether occurring in solids, liquids, or
even gases, has similar phenomenology and asymp-
totic kinetic scaling behavior. In the case considered
here, the mechanism of mass transfer among the
particles is diffusion in the interparticle space _ma-
trix ).

Part I of this paper _presents details of the droplet
coarsening experiments, where a holographic tech-
nique is used to observe in situ the size and position
of each individual precipitate in an isopycnic ¢neutral

I007
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Fig. 1. Configuration of a droplet, shaped as a sphencal cap. at the
experimental cell wall, where I is the visible radius of the droplet and
R is the radius of curvature of the dropJet.

buoyancy) system. Liquid phase separation in
succinonitrile-water alloy below the critical consolute
temperature was studied in this experiment. Small
(10 to 50 u m) droplets of one liquid were dispersed in
the other, attaining uniform shapes of spherical caps,
as a precipitate on the walls of the test cell. An
isothermal four-month-long anneal permitted exten-
sive coarsening via diffusion among the precipitated
droplets. The distance between the front and the back
cell walls is 100 _m, which is smaller than the typical
distance between the droplets. The boundary con-
ditions at the walls impose a zero normal diffusion
flux. Such geometry and the boundary conditions,
often characteristic of coarsening in thin films, imply
that the diffusion flux in the direction normal to the
walls is much smaller than the flux in the direction
parallel to the walls. Thus, in the theoretical formu-
lation, the diffusion field among the three-dimen-
sional droplets is considered as two-dimensional.

This paper presents the mathematical treatment
for the mixed-dimensional coarsening system studied
in Ref. 1. The theory is developed, using a muhipolar
series expansion. Two approximate solutions are dis-
cussed, which are monopolar and dipolar. The results
of the respective calculations are compared with each
other and with the experimental data.

GENERAL FORMULATION

The theoretical analysis of coarsening of droplets
requires solving a moving boundary diffusion prob-
lem fStefan problem) with boundary conditions ap-
plied at the test cell walls and at the surfaces of the
droplets. The boundary condition imposed on the
curved droplet surfaces is given by the usual linear
form of the Gibbs-Thomson equilibrium equation,
namely

c_R}=% / L ',
R i' (1_

Fradkov.. ,i. Glicksrnan. Rogers, Downey.
Witherow, Facemire. and Frazier

where c_R_ is the equilibrium concentration at the
surface of the droplet with radius R. c_ is the equi-
librium concentration at a planar interface, and L is
the Gibbs-Thomson characteristic length, given by

L =_2:_ (21
kT '

where y is the interfacial tension, Q is the molecular
volume, k is the Boltzmann constant, and T is the
temperature. A typical value for L is 10-= cm.

A numerical solution of this problem appears unre-
alistic for a large number of droplets. However, if the
supersaturation is low, then the characteristic diffu-
sion time is much shorter than the time needed for a

significant change of the droplet radius. As a conse-
quence, the diffusion equation,

= DV_c, (3)
at

reduces to the Laplacian equation,

V-_c=0. (4)

This concept was originally suggested by Todes, 2and
applied later by Lifshitz and Slyozov, 3 Wagner, 4 and
many others. The rate of change of droplet size is
given by

lurflce

where a is a geometrical factor relating to the droplet
volume that depends on the contact angle, O(see Fig.
1), of the droplet2

a(O)= ¼(2 - 3cos O+ cos3e). (6)

The boundary conditions at the test cell walls result
in the replacement of the three-dimensional diffusion
problem by a two-dimensional one, neglecting the
diffusion flux across the cell walls compared to the
flux along the walls. In the resulting two-dimensional
formulation of the problem, the surface integral in Eq.
(5) is rewritten as a contour integral along the visible
droplet perimeter s:

d(4_ rdO) 1_, =QDH Vcds, (7_
dt[ 3 sin J0 j ;_=_

where H is the distance between the test cell walls, 1
is the visible radius of the droplet shown in Fig. 1,
related to the spherical radius of the droplet ( radius of
curvature)as ] = Rsin0.From here on,we willuse l

rather than R, because l is the only measurable
characteristicofthe dropletsizeinthe experiment.

Even afterthissimplification,the problem still
remains too difficultfordirectnumerical analysis.

Each droplet surface representsa continuum of
sources/sinksforsoluteatoms.Insofaras theconcen-

trationfieldobeys theLaplacianEq._4J,one may use
a multipoleseriesexpansionto approach the exact
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boundary conditions at the droplet surfaces, assum-
ingthat the interdroplet distance is much larger than
the visible droplet radii. In two dimensions, the con-
centration as a function of location ? is given as

c(?)=c*+co(-qlnr+d?+.., lr2 , (81

where scalars c" and q, and vector a are the constants
of integration to be determined using the boundary
conditions. 6 Employing the electrostatic analog of
quasi-static diffusion, one finds that q corresponds to
an isolated charge, and d corresponds to a dipole
moment. The larger the interdroplet distance as com-
pared to the droplet radii, the fewer terms of the series
required. The logarithmic term is referred to as the
two-dimensional monopole term, the next as the di-
pole term, etc. It is important to mention that the rate
of the visible droplet size change is defined by the
monopole term alone:

sinJ 0g_ Dc H q'' o (95
Introducingthe dimensionlesspotentialq)insteadof
the concentrationc as

(C-Co)
_o=_ (i0)

C O

Eq. (4)can be rewrittenas

V_q)=O (115

The theory isfirstdeveloped by neglectingterms
higherthanthemonopole,and thenincorporatingthe
dipoleterms.The generaltwo-dimensionalsolutionof
the Laplacianequationinthe monopole approxima-
tionis

x ]?,-?l
¢p(e)=_0*-_ q, ln_, (12)

*-t a

where ?, is the positionof the centerof the i-th
droplet,aisan arbitrary,constantwithdimensionality

oflength,and q)*= (c"- co)/co.The Gibbs-Thomson
boundary conditions(11areused toobtainthe values
of (N + 1) constantsof integration,viz.cp"and qi.
Neglectingthe visibledropletradiusas compared to
theinterdropletdistance,one can substitutetheposi-
tionatthe surfaceofthe dropletby thepositionofits

center.This resultsina linearsetofN equations

Lsin0=cp, inl_, _q_in (13)
l--'_ -q a ., a

The reference experiment, see Part I, I showed that
the total volume of the droplets did not depend on time
during the isothermal annealing tsee Fig. 2). Mass
conservation, which can be written in terms of the q,
using Eq. (9/is expressed as

N

_q, =0, (141
1.1

and provides the last equation needed to complete the
set. As a consequence of Eq. (14 _,the constant a in Eq.

(13} cancels out. and its value does not effect the
solution. We will choose a = Lsin0.

The monopole approximation neglects the size of
the droplets, and does not account for the g'radients of
the diffusion field in the vicinity of the droplets. Note,
that in two dimensions the monopole term. a logarith-
mic function, changes very slowly. The next term in
the expansion is the dipole term, which accounts for
the _adients in the vicinity of droplets. This term
decays as the reciprocal of distance. The higher order
terms, which decay faster than the dipole term, are
neglected.

The general solution of the Laplacian Eq. (111
incorporating the dipole terms is given by

_ .. ( i_-?l a,.(_:,r.)/ (155

]

The boundary., conditions at the surfaces of all
droplets are given by

Lsin..__._u_=¢p,-q, In l_+ d,
Bm

I_ LsinO 1_

+2! .
,.,-qjm Ls--_-n_n8+ [_ _p,. , (161

and hold for l, in any direction, where T is the vector
originating at ihe center of the i-th droplet and ending
at an arbitrary point on its perimeter. The potential
field in the vicinity of the i-th droplet created by the
rest of the system, q)_,is given by

=_

C ln'(Pi + w)-' d'((r'+ _)- r_);(17)
o* +_ -qj + ,,

7 I0 s

A
u3 6 10 s
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where @ isa vectororiginatingatthecenterofthei-
thdroplet.Rewritingtheboundary conditionEq. (16)
using Eq. (17)gives

Lsin0 =q),(0)-q, I_ + d_ .T_+_, (18)
q

where
d -. _ -. _
---=-i-_----+ j_---. (19)
d@ aw dw:

To satisfyEq. (18)forany 1,,the followingtwo
equalitiesmust be met:

L sin0
-%(0)+q_ In =0, (20)

and

_-+_o =0. (21)

The followingsetof(3N + I)linearequationsforq_'s,
d,'s,and _0"result:

_-q_ in +
,., Lsin0 r_ r_-"J

-%ln_+_ = Lsin___._O
li

d,l____ (--_'2q,xJ' + rJ_- 2xi_d 2x"y'i 1
,.,( rj, ri_ ,, _ d,,.=O (22)

dy _( Y_i 2yj_x_ d + r_-2yj_ dy, l=Oq, ,,
]

N

_qj =0
j=l

where x':,= x,-xJ;Y,=L- Y_;r__= \(x _x_)2+(y _y_)_"

DLMZENSIONLESS FORMULATION

Using the Gibbs-Thomson characteristic length L
as a length scale Lsin0 as a unit of length, di-
mensionless variables are introduced for convenience:

the dimensionless droplet size

k_ 1 (231
= L sin'-'-'_'

the dimensionless characteristics of the droplet cen-
ter positions

. x, y,
(5 =_'- - • =_ 124_LsinO '_'-_'q LsinO

the dimensionless time

sin_0 12Dc,H 1 DcoHk_T _
z= _t= t, (25,

2a(O)U_sin_0 16a(0_ 7'_ _

and thedimensionlessdipolemoments ofthedroplets

Fradkov.....hi.Glicksman.Rogers.Downey'.
Wi_herow,Facemire.and Frazier

The monopole moments for two-dimensional diffusion
fields are naturally dimensionless.
Using _hese variables, Eqs. (11) and (22# reduce _o

d k, q' (26_
d_ E

-qi In k, + _I -q_ In p_, '+---Z--+--23-- +_o =--

5_ -k_ - q d p_ -2_,_ 6,_-
P_ 8,. =0, p_,

I . _ 2 1o' , =o
N

_q_=O

(28_

where

NUMERICAL TREATMENT

The set of ordinary differential Eq. (26) is solved,
using a fourth-order Runge-Kutta algorithm. The
values of the q_'s are obtained at each time step by
solving the sets of linear dimensionless Eq. (27) and
Eq. (28) for the monopole and the dipole approxima-
tions, respectively, The disappearance of a shrinking
droplet causes a singularity in the coefficient matrix
for the equation sets Eq. (27) and Eq. (28). This
requires the redefinition of the coefficient matrix by
dropping the column and row corresponding to the
vanished particle. A variable time-step was used to
deal with this situation. The time-step was continu-
ally chosen by estimating the shortest droplet life-
time. After each time-step, the droplets smaller than
a threshold size were eliminated, which allowed the
coefficient matrix to be redefined before the singular-
ity occurred. This threshold value was chosen to be
much smaller than the current average droplet size in
the system. As a droplet becomes small, it rapidly
vanishes, with the shrinking rate dk/dr increasing as
U _._.Therefore, the results are stable with respect to
the chosen value of the threshold. The results ob-

tained with a threshold value of 5_ of the average
droplet size in the system proved to be indistinguish-
able from those for 2Q. within the calculation error,
which never exceeded 0.01 _. The program was tested
and verified using a two-droplet case which has a
reasonably simple analytical solution.

The initial configuration for the multi-droplet simu-
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lation is taken from the experimental data Part I.:
The relationship between the experimental time t
and the computational dimensionless time _ is found.
using the theoretically predicted scaling behavior for
three-dimensional domains exchanging atoms via a
two-dimensional diffusion field. The dimensionality
of the problem suggests the scaling law

R 4=t, (29_

where _ is any characteristiclinear scale of the

system, for example, the average radius ofthe drop-
lets,and tisthe time.7.8Since N R5 = const,where N

is the number of droplets, Eq. (29) gives the time

dependence forthe number ofdroplets N as,

N -_3 = t (301

The experimental time dependence of the number of
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droplets shown in Fig. 3. The best fit to the numerical
calculations for this dependence was obtained for ; =

5.9 It - to), which gives a value for the combination of
parameters appearing in Eq. ¢25). The time depen-
dence of the number of particles calculated using both
monopole and dipole approximations fit the experi-
mental data well for part of the annealing period,
after which deviation increases. This disparity be-
tween the experimental and the calculated data,
observed for larger times, might result from the accu-
mulated influence of the droplets located beyond the
experimental field of view. As stated earlier, in two

dimensions, the decay of the interaction among the
droplets with the distance is rather subtle. Appar-
ently, the effect of unobserved particles accumulates
with time. resulting in the increasing deviation be-
tween the experimental and the calculated data.
Figure 4 shows that the experimental behavior dur-
ing the later time interval can be reproduced numeri-
cally by choosing a later experimental configuration
as the initial condition for the simulations.

Figure 5 shows the time dependence of the mean
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Fig. 8. Typical individual drol_let evolution in the case when the dipole

approximation shows better agreement with the experiment as com-

pared to the monopole approximation.

radius of the droplets for the experiment and the

calculations based on both monopole and dipole ap-
proximations. The simulation shows discontinuities
at the times of droplet vanishings. Note that the mean
radius decreases between two consequent vanishings.
This happens due to phase volume redistribution
from the smaller particles shrinking fast, to the larger
ones growing slower• However, the mean radius sud-

denly increases at the instant of a droplet vanishing,
exhibiting the expected overall increase in the aver-

age. The more droplets present in the system, the
smoother is the time dependence of the mean radius.
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Fig. 9. Typical individual droplet evolution in the case of a bad

agreement between the experiment and the calculations.

In contrast with the global behavior, the results of
the comparison between the experimental behavior

and the calculations for individual droplet evolution
vary widely in accuracy. The individual droplet evolu-
tion can be categorized in three distinguishable cases.
The locations of the representative droplets are shown
in Fig. 6. In certain locations, the droplets exhibit
good agreement between the experiment and both

dipole and monopole approximations, as shown in
Fig. 7. For some other droplets, the dipole calculation
deviates from the monopole calculation, but the di-
pole results are in better agreement with the
experimental measurements (see Fig. 8). In the third
group, deviations are found among the experimental
results for both calculations (see Fig. 9). As the only
difference between the monopole and the dipole ap-
proximations is that the latter incorporates con-
centration gradients, the particles exhibiting different
behavior in the two simulations are located in a strong
concentration gradient resulting from the surround-
ing environment. The cases without agreement be-
tween the calculations and the experiment appears to
be caused by the uncontrollable influence of droplets
located beyond the experimental field of view.

CONCLUSIONS

Theoretical modeling of coarsening among a finite
cluster of precipitated droplets between two closely
spaced cell walls is performed based on a muhipole
expansion method. This model calculates the time
dependencies of individual droplet radii, given the
droplet locations. The theory uses a global mass
balance equation rather than an external bounda_"

condition, therefore avoiding the introduction of any
additional arbitrary length scale into the system. Two
approximationswmonopole and dipole--are studied.
An initial experimental configuration is used as the
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initial condition for the calculation. Good agreement
is observed between the experimental data for the
statistically measured parameters, which are the
total number and the mean size of the droplets.
However, for larger times certain deviations develop,
resulting from accumulation of the effects of droplets
located beyond the experimental field of view.

The individual droplet evolution compared among
the two approximations and the experiment can be
categorized in three groups. The droplets in the first
group exhibit similar behavior in the experiment and
both approximations. The second group displays some
deviations between the monopole and the dipole ap-
proximations, with the dipole approximation results
being in better agreement with the experiment. The
monopole approximation accounts for the concentra-
tion field, whereas the dipole approximation, addi-
tionally, incorporates effects from the concentration
gradients resulting from the asymmetrical environ-
ment. The third group does not show agreement
between any of the approximations and the exper-
iment, apparently due to the.limited extent of knowl-
edge of the environment, i.e. the unknown locations

and sizes of the particles beyond the experimental
field of view',

The multipolar approach explicitly requires that
the characteristic interdroplet distance is large as
compared to indi_'idual droplet sizes, which limits
their application to low volume fractions of the dis-
persed phase. For systems with a high volume frac-
tion, _chis fundamental assumption fails. Hence, the
multipole approach cannot be extended to systems
with high volume fraction by merely incorporating
additional higher-order terms of the multipolar se-
lies. A fundamentally different approach appears to
be required for modeling systems with high volume
fraction of the dispersed phase.
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